ON CONTINUED FRACTIONS AND LAMBERT SERIES

ISSN: 2319-1023

G.S. Pant and V.P. Pande*

Department of Mathematics S.S.J College, Almora(UK) India

*Prof. and Head, Department of Mathematics S.S.J College, Almora(UK) India E-mail: gspant2008@gmail.com

Dedicated to Prof. K. Srinivasa Rao on his 75th Birth Anniversary

Abstract: In this paper, we have established certain results involving continued fractions and Lambert series.

Keywords and Phrases: Lambert series, continued fractions, q-shifted factorial, basic hypergeometric series.

2010 Mathematics Subject Classification: 33D15, 11B65.

1. Introduction, Notations and Definitions

The q-shifted factorial is defined by,

$$(a;q)_n = \begin{cases} 1, & n = 0\\ (1-a)(1-aq)...(1-aq^{n-1}), & n \ge 1 \end{cases}$$

Also,

$$(a;q)_{-n} = \frac{q^{n(n+1)/2}}{(-a)^n (q/a;q)_n}$$

The generalized basic hypergeometric series is given by,

$${}_{r}\Phi_{r-1}\left[\begin{array}{c}a_{1},a_{2},...,a_{r};q;z\\b_{1},b_{2},...,b_{r-1}\end{array}\right]=\sum_{n=0}^{\infty}\frac{(a_{1};q)_{n}(a_{2};q)_{n}...(a_{r};q)_{n}z^{n}}{(b_{1};q)_{n}(b_{2};q)_{n}...(b_{r-1};q)_{n}(q;q)_{n}},$$

where max. (|q|, |z|) < 1.

A generalized bilateral basic hypergeometric series is defined by,

$${}_{r}\Psi_{r}\left[\begin{array}{c}a_{1},a_{2},...,a_{r};q;z\\b_{1},b_{2},...,b_{r}\end{array}\right]=\sum_{n=-\infty}^{\infty}\frac{(a_{1};q)_{n}(a_{2};q)_{n}...(a_{r};q)_{n}z^{n}}{(b_{1};q)_{n}(b_{2};q)_{n}...(b_{r};q)_{n}},$$